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What are we covering today?

1. A quick recap...

2. Electrical filters

3. Equivalent circuits

4. Mechanical domain

5. Impedance analogy

6. Mobility analogy
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A weekly fact about Salford..!

Did you know...

• In 1850, under the terms of the Museums Act 1845, the Salford council

established the Royal Museum and Public Library; the first unconditional free

public library in World! The library sits at the head of Peal park and is now the

Salford Museum and Art Gallery.
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A quick recap...



AC circuit theory - recap
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Figure 1: Three arbitrary impedances in series

• For a series arrangement, the total impedance ZT presented by the circuit is,

ZT = Z1 + Z2 + Z3. (1)
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AC circuit theory - recap
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Figure 2: Three arbitrary impedances in parallel

• For a parallel arrangement, the total impedance ZT presented by the circuit is,

ZT =

(
1

Z1
+

1

Z2
+

1

Z3

)−1

. (2)

• For two elements in parallel:

ZT =
Z1Z2

Z1 + Z2
. (3)
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Voltage and current dividers

• Voltage divider transfer function

H =
Vout

Vin
=

Zout

ZT
→ Z2

Z1 + Z2
(4)

Z1

Z2

Vin

Vout

Figure 3: Potential (voltage) divider circuit

• Current divider transfer function

Hn =
In
IT

=
ZT

Zn
(5)

Iin

Z3

I3

Z1

I1

Z2

I2

Figure 4: Current divider circuit
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Types of component: summary

• Impedance is frequency dependant!

• Resistors

ZEr = R (6)

• Capacitors

ZEc =
1

jωC
(7)

• Inductors

ZEl = jωL (8)
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Figure 5: Impedance curves for resistor,

capacitor and inductor. 6



Electrical filters



RC circuit

• Use potential divider rule

Vout =
ZC

ZR + ZC
Vin (9)

• Use component impedances

Vout

Vin
=

1
jωC

R+ 1
jωC

=
1

jωRC + 1
(10)

• Take magnitude∣∣∣∣Vout

Vin

∣∣∣∣ = 1√
1 + (ωRC)2

(11)

Vin

I
R

C Vout

Figure 6: RC circuit
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RC circuit

• Transfer function magnitude:∣∣∣∣Vout

Vin

∣∣∣∣ = 1√
1 + (ωRC)2

(12)

• In the limit that ω → 0∣∣∣∣Vout

Vin

∣∣∣∣ → 1 (13)

• In the limit that ω → ∞∣∣∣∣Vout

Vin

∣∣∣∣ → 0 (14)
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Figure 7: Gain response for an RC circuit,

output taken across capacitor.
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RC circuit

• The cut-off frequency (ωc) is when the

power output is half that of the input

(gain of 1/
√
2 or -3dB)∣∣∣∣Vout

Vin

∣∣∣∣ = 1√
2
=

1√
1 + (ωcRC)2

.

(15)

• This will happen when (ωcRC)2 = 1.

Hence, we can see that,

ωc =
1

RC
(16)
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Figure 7: Gain response for an RC circuit,

output taken across capacitor.
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RC circuit

• Re-parametrise transfer function

Vout

Vin
=

1

jωRC + 1
=

1

j ω
ωc

+ 1
(17)

• The gain at cut off (when ω = ωc) is

Vout

Vin
=

1

j + 1
=

1− j

2
=

1

2
− j

2
(18)

• Using trigonometry, the phase

response at cut-off is,

ϕ = tan−1

(
−0.5

0.5

)
→ −45◦ (19)
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Figure 7: Gain response for an RC circuit,

output taken across capacitor.
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RL circuit

• Use potential divider rule

Vout =
ZL

ZR + ZL
Vin (20)

• Use component impedances

Vout

Vin
=

jωL

R+ jωL
=

1
R

jωL + 1
(21)

• Take magnitude∣∣∣∣Vout

Vin

∣∣∣∣ = 1√(
R
ωL

)2
+ 1

(22)

Vin

I
R

L Vout

Figure 8: RL circuit
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RL circuit

• Transfer function magnitude:∣∣∣∣Vout

Vin

∣∣∣∣ = 1√(
R
ωL

)2
+ 1

(23)

• In the limit that ω → 0∣∣∣∣Vout

Vin

∣∣∣∣ → 0 (24)

• In the limit that ω → ∞∣∣∣∣Vout

Vin

∣∣∣∣ → 1 (25)
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Figure 9: Gain response for an RL circuit,

output taken across capacitor.
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RL circuit

• The cut-off frequency (ωc) is when the

power output is half that of the input

(gain of 1/
√
2 or -3dB)∣∣∣∣Vout

Vin

∣∣∣∣ = 1√
2
=

1√(
R

ωcL

)2
+ 1

. (26)

• This will happen when
(

R
ωcL

)2
= 1.

Hence, we can see that,

ωc =
R

L
. (27)
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Figure 9: Gain response for an RL circuit,

output taken across capacitor.
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RL circuit

• Re-parametrise transfer function

Vout

Vin
=

1
R

jωL + 1
=

1

1− j ωc
ω

(28)

• The gain at cut off (when ω = ωc) is

Vout

Vin
=

1

1− j
=

1

2
+

j

2
(29)

• Using trigonometry, the phase

response at cut-off is,

ϕ = tan−1

(
0.5

0.5

)
→ 45◦. (30)
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Figure 9: Gain response for an RL circuit,

output taken across capacitor.
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LCR circuit

• Total impedance

ZLCR = R+ jωL+
1

jωC
(31)

• Use potential divider rule

Vout =
ZR

ZR + ZL + ZC
Vin

(32)

• Use component impedances

Vout

Vin
=

R

R+ jωL+ 1
jωC

=
1

1 + jωL
R + 1

jωRC

(33)

• Take magnitude∣∣∣∣Vout

Vin

∣∣∣∣ = 1√
1 +

(
ωL
R − 1

ωRC

)2 (34)

Vin

I L
C R Vout

Figure 10: LCR circuit
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LCR circuit

• Transfer function magnitude:∣∣∣∣Vout

Vin

∣∣∣∣ = 1√
1 +

(
ωL
R − 1

ωRC

)2 (35)

• In the limit that ω → 0∣∣∣∣Vout

Vin

∣∣∣∣ → 0 (Det. by capacitance)

(36)

• In the limit that ω → ∞∣∣∣∣Vout

Vin

∣∣∣∣ → 0 (Det. by inductance)

(37)
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Figure 11: Gain response for an LCR circuit,

output taken across resistor.
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LCR circuit

• Maximum gain when,(
ωL

R
− 1

ωRC

)
= 0 (38)

• Rearrange to find resonant frequency

ωr =
1√
LC

(39)

• The BW and resonant frequency

determine the Q-Factor

Q =
ωr

BW
=

1√
LC

L

R
=

1

R

√
L

C
(40)
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Figure 11: Gain response for an LCR circuit,

output taken across resistor.
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Impedance: a common language

• Electrical impedance is the measure of the opposition that a circuit presents to

a current when a voltage is applied

ZE =
V

I
(41)

• Mechanical impedance is a measure of how much a structure resists motion

(velocity) when subjected to a force

ZM =
F

u
(42)

• Acoustic impedance is a measure of the opposition that a system presents to

the acoustic flow (volume velocity) when subjected to acoustic pressure

ZA =
p

U
(43)
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Impedance: resistance vs. reactance

• Impedance is generally a complex quantity. It has a real part and an imaginary

part.

Z = R+ jX (44)

- Real part is called the resistance - R

- Imaginary part is called reactance - X

• Resistance describes energy loss (e.g. through heat, friction, etc.)

• Reactance describes energy storage (e.g. through mag/elec fields, momentum,

etc.)
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Equivalent circuits



Equivalent circuits: drop and flow

• We have covered 3 key electrical components: resistor, capacitor, inductor.

• There are three generic quantities:

1. The (voltage) drop across the (electrical) component

2. The (current) flow through the (electrical) component

3. The magnitude of the (electrical) component itself (resistance, capacitance,

inductance)

• These generic quantities are not limited to electrical components:

- For a mechanical system we have force (F ) and velocity (u)

- For an acoustic system we have pressure (p) and volume velocity (U)

- But which quantity is the drop and which is the flow? - Depends on the problem!
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Mechanical domain



Mechanical domain: three main components

• Three main components: mass elements,

springs, and dampers

• Mechanical impedance:

ZM =
F

u
(45)

• Turn out to be very similar to those of

electrical components discussed so far.

MF

a

F
x

x = 0

F

u

u = 0

Figure 12: Mass, spring and damper. 21



Mechanical domain: mass

• Newton’s 2nd Law

F = Ma (46)

• Assume periodic force F = Foe
jωt

F = M
du

dt
= jωMu (47)

• The impedance is then,

ZM =
F

u
= jωM (48)

• Impedance is proportional to frequency and

complex - what electrical component does this

look like?

MF

a

Figure 13: Mass element.
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Mechanical domain: spring

• Hooke’s Law

F = kx =
1

C
x (49)

• Assume periodic force F = Foe
jωt

F =
1

C

∫
udt =

1

jωC
u (50)

• The impedance is then,

ZC =
F

u
=

1

jωC
(51)

• Impedance is inv. prop. to freq. and complex -

what elec. component does this look like?

F
x

x = 0

Figure 14: Spring element.
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Mechanical domain: damper

• Viscous damping element

F = Ru (52)

• The impedance is then,

ZR =
F

u
= R (53)

• Impedance is constant wrt frequency and real -

what electrical component does this look like?

F

u

u = 0

Figure 15: Damping element.
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Impedance analogy



Equivalent circuits: drop and flow

• For the impedance analogy we think of:

- Force as being analogous to voltage F → V

- Velocity as being analogous to current u → I

• By drawing this particular equivalence we preserve the analogy between

mechanical and electrical impedance:

ZM → ZE (54)

• But, the topology of our problem is lost... i.e. mechanical system is arranged

differently to its analogous electrical circuit

• Another popular one is called the mobility analogy...
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Impedance analogy: summary

Element Impedance analogy Mobility analogy

Mass
Mass ↔ Inductor

ZM = jωMM ↔ ZE = jωLE

Spring
Spring ↔ Capacitor

ZM = 1
jωCM

↔ ZE = 1
jωCE

Damper
Damper → Resistor

ZM = RM ↔ ZE = RE
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Impedance analogy: mass-spring-damper

• Use analogy between mechanical and

electrical components to model mechanical

systems as electric circuits.

• To draw equivalent circuit first recall the

definition of impedance analogy:

F → V u → I (55)

• Note that the mass, spring and damper all

have the same velocity, because they are

connected together...

M [kg]

C [m/N] R [Ns/m]

F

u

u = 0

Figure 16: Mass-spring-damper.
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Impedance analogy: mass-spring-damper

• Using AC circuit theory we can easily calculate the impedance of the mechanical

system,

ZM = jωMM +
1

jωCM
+RM (56)

• Mechanical velocity given by,

u =
F

ZM
=

F

jωMM + 1
jωCM

+RM
(57)

F

u RM CM

MM

Figure 17: Mass-spring-damper

equivalent circuit
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Impedance analogy: mass-spring-damper

• Using equivalent circuit we can

calculate the velocity of the mass,

u =
F

jωMM + 1
jωCM

+RM
(58)

• As expected, the response looks just

like an LCR circuit!
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Figure 11: Velocity response of a mass-spring

system.
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Mobility analogy



Mobility analogy

• For the impedance analogy we made the following equivalences:

- Force as being analogous to voltage F → V (drop parameter)

- Velocity as being analogous to current u → I (flow parameter)

• But there is no reason why we cant consider the opposite!

• For the mobility analogy we make the following equivalences:

- Force as being analogous to current F → I (flow parameter)

- Velocity as being analogous to voltage u → V (drop parameter)
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Next week...

• Mobility analogy

• Impedance stuff

• Q-factor

• Reading:

- Mechanical domain: lecture notes, chp. 4, pg. all

- Impedance and mobility analogies: lecture notes, chp. 4 pg. all
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